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NONLINEAR MECHANISMS OF THE INITIAL STAGE

OF THE LAMINAR–TURBULENT TRANSITION

AT HYPERSONIC VELOCITIES

UDC 532.526A. N. Shiplyuk,1 D. A. Bountin,1 A. A. Maslov,1 and N. Chokani2

Weakly nonlinear development of waves in an axisymmetric hypersonic boundary layer is studied by
the method of bispectral analysis. The type of nonlinear interaction that was not observed previously
in such flows is found. The possibility of subharmonic resonance of the second mode at the nonlinear
stage of transition is demonstrated. The previously discovered nonlinear generation of the harmonic
of the fundamental wave of the second mode of disturbances is observed.
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Introduction. The knowledge of the laminar–turbulent transition point is very important for aircraft and
rocket construction because skin friction and heat transfer between the vehicle and the ambient medium significantly
depend on the boundary-layer flow regime. The nonlinear stage of transition is the final one and follows the stage
of receptivity (where the external flow oscillations are transformed into the own oscillations of the boundary layer)
and the stage of linear development of disturbances (described by the linear stability theory). Nonlinear interaction
leads to the formation of phase-related waves, which results in laminar-flow stochastization manifested in energy
redistribution in the power spectrum of flow oscillations. It is found that one of the main types of nonlinear
interaction at the initial stage of nonlinearity at subsonic velocities is the subharmonic (parametric) resonance
[1, 2]. In this type of interaction, the wave with the frequency equal to one half of the frequency of the fundamental
wave (subharmonic) is nonlinearly amplified.

It is shown in [3] that the subharmonic resonance is the main mechanism in the weakly nonlinear region of
transition in a supersonic boundary layer. The evolution of the first mode waves, which have a vortex nature and
are dominating up to Mach numbers M ≈ 4, was considered [4]. The method of artificial wave packets was used in
the experiments of [5, 6], which allowed a detailed study of wave processes in the boundary layer.

In analyzing natural disturbances, effects of nonlinearity can be revealed by several methods. One of the most
widely used techniques is the statistical method. It is based on the fact that the distribution of signal fluctuations
close to the Gaussian distribution (in the general case, the distribution symmetry) means that the process is linear
(the harmonics composing the signal are linearly independent), whereas any significant deviation from the normal
distribution characterizes the process nonlinearity [7, 8]. The drawback of the statistical method is that it does not
allow obtaining any particular characteristics of the nonlinear process. Not only to reveal the effect of nonlinearity
but also to determine which waves are nonlinearly related and also to find the degree of this relation, the bispectral
analysis is used (though for quadratic nonlinearity only). In [9], both methods were used to study the nonlinear
stage of the laminar–turbulent transition in a supersonic boundary layer on a flat plate. The results of statistical
and bispectral analysis were in good agreement.

In [8, 10], the bispectral analysis was used to study nonlinear interaction of waves in the weakly nonlinear
region of transition in hypersonic boundary layers, where two-dimensional (the wave vector is parallel to the flow
direction) second-mode disturbances with an acoustic nature are dominating [4]. In studying the transition at
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hypersonic velocities, a new type of nonlinear interaction differing from subsonic and supersonic cases was observed,
namely, generation of the harmonic of the fundamental wave (wave with a frequency twice as high as the frequency
of the fundamental wave) [8, 10, 11]. No proof of the presence of subharmonic resonance was found.

It is known that the laminar–turbulent transition in wind tunnels can occur in a different manner because of
the different level and spectral composition of free-stream noise. Therefore, it is necessary to perform experiments
in different wind tunnels to make sure that the observed phenomenon is a specific feature of a given type of flow
rather than of a particular facility. The data of [8, 10] were obtained for different mean and fluctuating free-stream
parameters, and the analysis of the measurement results indicates the presence of one mechanism of nonlinearity:
generation of the harmonic of the fundamental wave. The available data, however, are insufficient to draw the final
conclusions on the mechanisms of nonlinear evolution of disturbances at hypersonic velocities.

The objective of the present work is to obtain additional experimental data on evolution of disturbances in
the weakly nonlinear region of transition in hypersonic boundary layers by the method of bispectral analysis.

1. Experimental Equipment. The experiments were performed in a T-326 hypersonic blowdown wind
tunnel based at the Institute of Theoretical and Applied Mechanics of the Siberian Division of the Russian Academy
of Sciences for a free-stream Mach number M∞ = 5.95, unit Reynolds number Re1∞ = 11.9 · 106 m−1, stagnation
pressure P0 = 106 Pa, and stagnation temperature T0 = 390 K. During the test, the values of the parameters P0

and T0 were maintained constant within 0.06 and 0.25%, respectively. The free-stream parameters M∞ and Re1∞
were determined by the measured values of P0 and T0 and the known dependence M∞ = f(P0) obtained in studying
the flow field in the test section of the T-326 wind tunnel. Mass-flow fluctuations ρu (ρ is the density and u is
the flow velocity) were measured by a constant-current hot-wire anemometer operating in the range of frequencies
0–600 kHz. Single-wire probes 1 mm long were used; the probes were made of tungsten wire 5 µm in diameter.

The mass-flow fluctuations were measured in the layer where their values were maximum [12]. The error of
hot-wire motion across the boundary layer was 0.01 mm. The x coordinate was counted along the cone generatrix
from the model tip, and the error of motion in the x direction was 0.02 mm.

During the experiment, the variable component of the electric signal from the hot-wire output was recorded
into the PC memory through a 12-bit ADC. To obtain the spectra of fluctuations, the variable signal was digitized
with a frequency of 5 MHz, which allowed us to analyze signals up to a frequency of 2.5 MHz. Because of the
limited spectral range of the hot-wire anemometer, however, data lower than 600 kHz were used.

The model was a sharp steel cone 0.5 m long with a half-angle of 7◦. The bluntness radius of the model tip
was smaller than 0.1 mm. The model was mounted at zero incidence (within 0.06◦).

2. Bispectral Analysis. The bispectrum definition can be explained using an analogy with the signal-
power spectrum. The power spectrum is the Fourier transform of the autocorrelation function

P (f) =

∞∫
−∞

R2x(τ) exp (−i2πfτ) dt = X∗(f)X(f),

where R2x(τ) = lim
T→∞

1
T

T/2∫
−T/2

x(t)x(t+ τ) dt is the autocorrelation function or a cumulant (moment) of the second

order and X(f) is the Fourier transform of the signal x(t); the superscript asterisk indicates complex conjugation.
The bispectrum is a double Fourier transform of the second-order autocorrelation function [13]

B(f1, f2) =

∞∫
−∞

∞∫
−∞

R3x(τ, λ) exp (−i2πf1τ) exp (−i2πf2λ) dτ dλ = X∗(f1 + f2)X(f1)X(f2),

where R3x(τ, λ) = lim
T→∞

1
T

T/2∫
−T/2

x(t)x(t+ τ)x(t+ λ) dt is the third-order cumulant.

Since the bispectrum amplitude depends on the wave amplitude, the bispectrum is usually normalized to
the power spectrum, which yields the bicoherence spectrum

bic2(f1, f2) =
|B(f1, f2)|2

P (f1)P (f2)P (f1 + f2)
.
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Fig. 1. Fourier spectrum of the signal Af in the layer of the maximum fluctuations for x = 200 (1),
245 (2), 269 (3), 286 (4), 304 (5), and 315 mm (6).

The bicoherence amplitude can be interpreted as the contribution of energy of nonlinear interaction to the wave
energy with a frequency f1 +f2 or as the power of the quadratic relation in terms of wave phases f1, f2, f3 = f1 +f2.
The bicoherence amplitude is limited by the values of 0 (completely independent waves) and 1 (completely related
waves).

In practice, averaging is used to obtain a good signal-to-noise ratio for bicoherence amplitudes. The digitized
signal is divided into M sectors, the bispectrum and power spectrum are calculated for each sector, averaging in
terms of M is performed, and the bicoherence is finally obtained:

bic2(f1, f2) =
1
M

M∑
i=1

|Bi(f1, f2)|2
[ 1
M3

M∑
i=1

Pi(f1)
M∑
i=1

Pi(f2)
M∑
i=1

Pi(f1 + f2)
]−1

.

The condition of phase relation of three waves f1, f2, f3 is

f3 = f1 + f2, ϕ3 = ϕ1 + ϕ2.

If the waves are statistically independent, all phases are random quantities, and the bicoherence amplitude
after averaging tends to zero. If the waves satisfy the above-described conditions, the bicoherence amplitude tends
to unity.

Owing to bispectrum (and bicoherence) symmetry, it is sufficient to know its value in the triangle (0, 0),
(fN, 0), (fN/2, fN/2), where fN is the Nyquist frequency (see [13] for more details). In the present work, the
graphs are plotted in the region 0 < f1 < 600 kHz, 0 < f2 < 600 kHz (the upper limit is associated with the
frequency range of the hot-wire anemometer), providing redundant information (the plots are symmetric about the
line f1 = f2). In the authors’ opinion, this representation makes the data more understandable. If the plot has
a peak at the intersection of frequencies (f1, f2), this means that waves with the frequencies f1, f2, f3 = f1 + f2

are nonlinearly related. Nevertheless, the bicoherence spectrum does not contain information about the particular
type of interaction: f3 − f1 → f2, f3 − f2 → f1, or f1 + f2 → f3. Correct interpretation of data requires a physical
analysis or additional information (e.g., the Fourier spectrum of the signal).

In the present work, the bicoherence spectra were calculated on the basis of records with 217 samples. For
averaging, the record was divided into 512 time series with 256 samples in each. The frequency resolution for the
bicoherence spectra was 20 kHz.

3. Results and Discussion. Figure 1 shows the Fourier spectra of the signal for six cross sections along
the x coordinate. Two regions with the centers at f ≈ 110 kHz and f ≈ 350–270 kHz are clearly seen, which
correspond to disturbances of the first (vortex) and second (acoustic) modes. The amplitude of the second-mode
waves is higher than that of the first-mode waves, since the second-mode disturbances are more unstable for this
type of flows.
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Fig. 2. Spectrum of signal bicoherence in the layer of the maximum fluctuations for x = 200 (a) 245 (b), 269 (c),
286 (d), 304 (e), and 315 mm (f): the solid curves refer to f1 + f2 = fII and the dashed curves refer to f1 = f2.
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For the same cross section, Fig. 2 shows the bicoherence spectra (the dashed line is the line of symmetry of
the plot; the solid line is defined by the equation f1 + f2 = fII, where fII is the frequency of the local maximum in
the Fourier spectrum of the signal corresponding to the second mode of disturbances; the isolines are plotted from
the level of 0.03 with a step of 0.021).

In the first cross section x = 200 mm (Re = Re1e x = 3.17 · 106, where Re1e is the unit Reynolds number
based on parameters at the boundary-layer edge), there are no peaks in the bicoherence spectrum (bic2 < 0.03),
i.e., the disturbances develop linearly (Fig. 2a).

Beginning from the cross section x = 245 mm (Re = 3.87 · 106), nonlinearly related waves appear (Fig. 2b).
The interaction occurs in a wide range of frequencies along the line f1 + f2 ≈ 335 kHz. The total frequency of
interaction is somewhat higher than the center of the second-mode frequency packet fII ≈ 320 kHz (see Fig. 1) but
within the frequency resolution. Thus, three waves are phase-related: f1, f2, and f3 = f1 + f2 ≈ fII. The peak
(f1, f2) = (110 kHz, 230 kHz) ≈ (fI, fII − fI) (fI corresponds to the center of the first-mode frequency packet) is
noticeable in all cross sections in the downstream direction, except for the cross section x = 269 mm (Re = 4.24·106)
(Fig. 2c). Apparently, the formation of this peak is related to the fact that there is a local maximum in the Fourier
spectrum in the vicinity of f ≈ 110 kHz (see Fig. 1). In the cross section x = 269 mm, the bicoherence amplitude
increases, the interaction also occurs along the line, but the line is slightly displaced toward lower frequencies
f1 + f2 ≈ fII ≈ 320 kHz. Such a displacement is also observed in other cross sections (Fig. 2d–f), which is
associated with the downstream decrease in the second-mode frequency (this is seen in the Fourier spectra). The
center of interaction [a local maximum at the frequency (fII/2, fII/2)] is clearly traced up to the strongly nonlinear
region (Fig. 2f). Identification of the second-mode subharmonic (which is better noticeable in the subsequent cross
sections) synchronized with the fundamental wave is one of the signs of the subharmonic resonance. Yet, this can
be a simple combination interaction if not all conditions of the resonance are satisfied. Note, for the resonance to
exist, one should satisfy the equalities

f1/2,1 + f1/2,2 = f0, ϕ0 = ϕ1/2,1 + ϕ1/2,2

(f0 is the frequency of the fundamental wave and f1/2 is the frequency of the subharmonic wave) and the conditions
on the wavenumbers

α1/2,1 + α1/2,2 = α0, β1/2,1 + β1/2,2 = β0

[α and β are the longitudinal and transverse (in our case, circumferential) wavenumbers]. It does not seem possible
to verify satisfaction of the last two equalities in the present work. Therefore, it is possible to determine whether a
given interaction is resonance or simply combination only by performing additional studies. It is known, however,
that the streamwise phase velocity of the second-mode waves depends weakly on the wave inclination angle [14];
therefore, the condition α1/2 + α1/2 = α0 should be satisfied for waves in a wide range of angles. In our case,
β0 = βII = 0 (because of the two-dimensionality of the most unstable second-mode disturbances), and we have
β1/2,1 = −β1/2,2, which corresponds to a pair of symmetric waves. Thus, the interacting wave triplet is close to the
triplet observed at subsonic velocities [1].

The presence of a wide frequency range of interacting waves does not contradict the existence of the resonance.
In the case of subsonic velocities, the subharmonic resonance exists with a frequency detuning f1/2 ± ∆f until
∆f = f1/2 [1], and phase synchronism of waves participating in the resonance was observed in a wide range of
frequencies up to the fundamental wave frequency f0 [15].

In the cross section x = 269 mm (Fig. 2c), a new type of interaction appears at the frequency (f1, f2)
= (300 kHz, 300 kHz) ≈ (fII, fII), i.e., the harmonics of the second-mode waves are generated due to nonlinear
mechanisms: (f1 ≈ fII) + (f2 ≈ fII) → (f3 ≈ 2fII). This type of interaction was observed previously and was
described in [8, 10]. In subsequent cross sections, the level of bicoherence continues to grow and reaches the
maximum value bic2 ≈ 0.35 at x = 287 mm (Re = 4.53 · 106) (Fig. 2d). The line of interaction moves toward
lower frequencies even further: f1 + f2 ≈ 290 kHz. New regions of phase-related waves appear around the line
of interaction and also in the low-frequency region. In particular, the following peaks can be identified: (f1, f2)
= (110 kHz, 110 kHz) ≈ (fI, fI) — interaction of the first-mode waves with waves whose frequency is approximately
equal to 2fI; (f1, f2) = (45 kHz, 145 kHz) ≈ (fI/2, fII/2) — phase synchronization of subharmonics of the first
and second modes with the wave of the total frequency of 200 kHz; (f1, f2) = (55 kHz, 55 kHz) ≈ (fI/2, fI/2) —
interaction of the first-mode subharmonic with the first-mode fundamental wave. The interaction mechanism
considered is, apparently, similar to that found at supersonic velocities [3].
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In the next cross section (x = 304 mm), the interaction amplitude fII +fII → 2fII is maximum (bic2 ≈ 0.26),
but the overall level of bicoherence decreases (Fig. 2e). In the last cross section (x = 315 mm), the bicoherence
amplitude has the same level as in the second one (Fig. 2f). In contrast to the second cross section, however, the
interaction mainly occurs with low frequencies f1 = 1–20 kHz and f2 = 200–260 kHz, which “lifts up” the low-
frequency range of the spectrum. A decrease in bicoherence amplitude, which indicates the degree of the quadratic
relation in terms of phases, indicates that the region of strongly nonlinear development of the waves begins with
cubic, fourth, etc., orders of the nonlinear relation. The transition into the strongly nonlinear region is also indicated
by equalization of the power spectrum (see Fig. 1), i.e., spectral energy redistribution occurs due to the nonlinear
interaction.

4. Conclusions. The weakly nonlinear region of the laminar–turbulent transition on a sharp cone at
hypersonic velocities is considered in the paper by the method of bispectral analysis. The existence of subharmonic
resonance at the initial stage of the laminar–turbulent transition at hypersonic velocities is proved for the first time.
The interaction occurs in a wide spectral range, and the line of interaction is shifted toward the low-frequency range
of the spectrum in the downstream direction as the frequency of the second-mode waves decreases. The nonlinear
interaction leading to generation of the harmonic of the second-mode disturbances, described in [8, 10], is also
observed.
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